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Effect of islands upon dispersion in rivers 

By RONALD SMITH 
Department of Mathematical Sciences, Loughborough University of Technology, 

Loughborough, LEI1 3TU, UK 
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A general formulation is given for the dispersion of conservative tracers in steady flow 
in multi-connected channels. A multi-index is used to distinguish the different routes 
for tracer between the source and the observation position. For each route exact 
formulae are obtained for the time integral, time centroid, and cross-channel average 
of the temporal variance. The total concentration is the superposition of the 
contributions from the different routes. 

1. Introduction 
It takes the order of a hundred channel breadths downstream for a point release of 

conservative tracer to become well mixed across a river (Yotsukura & Sayre 1976). 
Consequently, there is a substantial stretch of river in which the concentrations are 
strongly dependent upon the precise position of release (Smith 1981). Similarly, the 
rate of dilution at one section of a river depends upon the upstream geometry over 
distances which can encompass several river bends (Fischer 1969). Over such large 
lengthscales there can be additional complications such as deltas, tributaries or islands. 

Daish (1985) investigated the effect of single and repeated splitting of a flow. He 
showed that it is only far downstream that the rate of dilution ceases to be dominated 
by conditions prior to the splitting. Thus, the assumption of ‘perfectly mixing vertices’ 
invoked in earlier mathematical investigations (Saffman 1969; Ultman & Blatman 
1977; Adler 1985) is quite inappropriate for rivers. Smith & Daish (1991) investigated 
the effect of a ‘clean’ tributary on the dilution process. They interpreted junctions as 
being a special form of initial conditions. For conservative tracer released far upstream 
of a river junction, they showed that in addition to dilution by the ‘clean’ water, there 
could be substantial effects upon the time-of-travel and the temporal spread of the 
concentration as observed far downstream of the junction. 

The purpose of the present work is to give a generalized mathematical analysis which 
encompasses branching and re-joining (deltas and islands). The concentration is 
decomposed into contributions associated with distinct routes around any islands. 
Each contribution evolves in an essentially diffusive manner and is quantified in terms 
of the dosage, time-of-travel and spread. However, the superposition could be non- 
diffusive in character and exhibit features such as multiple concentration peaks. 

On flood plains there can be distinct river routes which rejoin many kilometres 
downstream. In earlier centuries, after the floods in the rainy season, all but one of the 
routes could be expected to silt up (it would not always be the same route that would 
persist). Now that river water is used for the irrigation of adjacent farmland, in 
industry and for recreation, remedial action would be taken to keep any useful river 
branches flowing. Another category of multiple routes occurs when a navigation canal 
cuts across a lengthy bend or series of bends. Local examples in the East Midlands of 



250 R. Smith 

FIGURE 1. Coordinates aligned along and across the flow. 

the UK are the River Trent, the Old Trent and the Trent-Mersey canal. Hence, on 
flood plains ‘islands’ can be exceedingly long. 

2. Flow-following coordinate system 
It only takes of the order of 40 water depths downstream for a tracer to become 

vertically well-mixed. In practice (except for dredged channels) this is much less than 
the horizontal lengthscales of major topographical features such as islands. For a 
modest sized river of depth 1 m, this horizontal lengthscale for vertical mixing would 
be 40m. So, we can make the simplification of considering the vertically averaged 
concentration as advected along in the vertically averaged flow. 

If the flow is steady, then it is also convenient to use an orthogonal coordinate 
system (x,y) aligned along and across the flow (Yotsukura & Sayre 1976). To allow for 
the different flow distances either side of islands and for the varying separation between 
adjacent flow lines, we have non-constant metric coefficients m,(x, y ) ,  m2(x, y )  (see 
figure 1). In terms of the metric coefficients, the physical distance ds associated with 
small coordinate displacements (dx, dy) is given by the Pythagorean formula 

ds2 = mt dx2 + mi dy2. (2.1) 
At points where the flow divides or re-joins, the longitudinal coordinate x is assumed 

to be adjusted (by increasing m, in the long channels) so that there is a single value of 
x. Any shorelines are streamlines with y = constant. At a fixed value of x we use an 
index i to label the channels and we designate the y-coordinates of the shorelines as 
ai,bi. At separation or joining points we could re-designate the y-labelling of the 
streamlines provided that we ensured that the concentration was correctly matched 
across the change of labelling. 

The alignment of the coordinate system with the flow means that there is only a 
single non-zero velocity component m, u,, where u,(x, y )  is the rate-of-crossing of x- 
contours. For a steady flow, the conservation-of-mass equation is 

where h(x,y) is the water depth. 
m2 hu,) = 0, (2.2) 
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The advection-diffusion equation for the conservative tracer concentration c(x, y ,  t)  
is 

Here K ( X ,  y )  is the transverse diffusion coefficient, which via vertical averaging 
encompasses the shear dispersion associated with any secondary circulation (Fischer 
1969). The source strength is q and the delta functions 6 signify the source position xo yo 
and timing to. Longitudinal diffusion has been ignored because the implicit lengthscale 
is of order 100 channel breadths, so terms are of order lop4 relative to a; terms. The 
condition of no loss of tracer through shorelines is 

mlmzh[a,c+~,a,C]-~a,{(ml/mz)h~ayC} = qS(x-xo)6(y-yo)S(t-to). (2.3) 

hKayc = 0 on y = ai,bi. (2.4) 

3. Pollution via many routes 
When there are islands there can be more than one route for the tracer to get from 

the point of discharge (xo, yo) to the present point of observation (x, y) .  The pollution 
contributions from the different routes can have quite dissimilar magnitudes, times-of- 
travel, and temporal spreads. Indeed, a complicated-looking superposition could be 
composed of individually simple parts. Thus, it is desirable to distinguish between the 
multiple contributions. 

If at n successive junctions the selection of channel is i,, i,, . . . , i ,  then we can use the - .  

multi-index 
p = il, ..., in 

to label the corresponding contribution c,(x, y ,  t ;  x,, yo, to) to the concentration. 
Different routes can involve different numbers of junctions and so can have different 
lengths for the multi index p. Along the designated route, c, satisfies the 
advection-diffusion equation (2.3) and the boundary conditions (2.4). However, any 
tracer that enters a channel which is not part of the designated route (a ‘non- 
designated ’ channel) is subsequently ignored because it is accounted for in another 
route. In particular, at the downstream end of a non-designated channel cp is zero. 

4. The dosage 
Soon after Taylor’s (1953) pioneering work on shear dispersion, Aris (1956) 

developed a systematic mathematical procedure for calculating the spatial moments of 
the concentration distribution in plane parallel flows. The successive moments give 
more and more detailed information about the spatial concentration profile. In 
particular, the rate of dilution is conventionally characterized in terms of the halved 
growth rate of the second moment (the shear dispersion coefficient). For rivers the 
longitudinal non-uniformity makes spatial moments inappropriate. However, temporal 
moments can be used instead (Tsai & Holley 1978, 1980; Smith 1984). From the 
concentration component c,(x, y ,  t; x,,,yo, to )  we define temporal moments relative to a 
reference time-of-travel T,(x; xo, yo)  : 

(4.1) 

The specification of 7, is an important aspect of the subsequent analysis. 
The zero moment cF)(x, y ; xo, yo)  is the dosage : the time-integrated concentration 

experienced at the location (x,y) for the particular route p. To remove the 
proportionality to the source strength q we write 

(4.2) 

m 

c:j’ = s., (t-T,-ro)jC,(X,y,I)dr ( j  = 0, 1, ...). 

c:”’ = q q x ,  y ; xo, Yo). 
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At junctions the continuity of concentration implies that @, is likewise continuous. 
Also, the diffusion equation (2.3) for c gives rise to a corresponding equation for @,: 

m, m2 hu, a5 @, - a,{(m,/mJ h K  ay @,I = 6(x - xo) S(Y -v,>, (4.3 a)  

with h K a ,  a,, = 0 on shorelines, (4.3b) 
and @, = 0 at exit from non-designated channels. (4.3 c) 

the multi-index p = i,, . . . , in labels the designated channels (up to and including the 
present channel i = in). The value of @, can only be influenced by the upstream route 
and not by the subsequent selection of branches. 

Within the i channel the cross-stream integral 

@,<x,,Yo) = m, m2 hu, @, dY (4.4) 1: 
is constant (independent of x) and measures the fraction of the original discharge that 
has traversed the route p = i,, . . . , in into the i = in channel. The sum of the 8, over all 
routes and channels up to the present value of x, accounts for all the original discharge: 

c8,= 1. 
/r 

(4.5) 

The diffusive character of (4.3 a)  and the non-negative forcing ensures that @, is non- 
negative. A natural cross-channel average value associated with the route p involves 
the weight factor m, m2 hu, @,: 

If a channel remains distinct, then sufficiently far downstream (100 channel 
breadths) the function @,, becomes constant. The asymptotic uniform value is the 
quotient of the flux of tracer into that channel and the flux of water along that channel : 

(4.7) 

For example, far downstream of a river junction it is the increased flux of water that 
dilutes the eventual dosage (Smith & Daish 1991). Also, far downstream the average 
VI], becomes the same as a flux-weighted average (Smith 1984). 

A total dosage do) at an observation position (x, y) in channel i can be obtained by 
a summation over all possible routes into that channel of the component dosage c:): 

5. Time-of-travel 

will differ from the reference time-of-travel T, (x ;  x0, yo).  Thus, we write 
At different observation positions y across the ith channel the precise time of arrival 

c:) = @,G,. (5.1) 

Within a channel the time-of-arrival function G,(x, y ; xo, yo) satisfies the equations 

m, mz hu, a,(q, G,) - i3,{(m,/mz) h K  c?y(@, G,)} = m, m2 h@, 1 - u,(dT,/dx), ( 5 . 2 ~ ~ )  
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with h K  ay(@, G,) = 0 on shorelines, (5.2b) 
and QPG, = 0 at exit from non-designated channels. ( 5 . 2 ~ )  

To avoid systematic growth in G, it is appropriate to choose the reference time-of- 
travel to be 

with 

( 5 . 3 ~ )  

(5.3b) 

The reciprocal speed l/%, is sometimes called the 'slowness'. If a channel is sufficiently 
long that @, becomes constant, then %, eventually corresponds to travel at the bulk 
velocity for that channel. 

The selection (5.3a, b) for the reference time-of-travel 7, ensures that 

[G,], = constant along channel i. (5.4) 
The constant can be incremented at a flow division if on average late-arriving fluid goes 
into the ith channel (Daish 1985). For a sufficiently long channel the departure from 

(5.5) 

A flux-weighted travel time summed over all routes and channels up to the present 

the average - 
G, = G, - [G,I, 

becomes independent both of the route p and of the source position (xo,yo) .  

value of x 

corresponds to a flux-weighted slowness 

6. Temporal variance 
In terms of the first few moments, the temporal variance v ; ( x , y ;  xo ,yo)  is defined 

The second term in this definition takes account of the fact that the tracer arrives at 
different times at different places across the flow. The equation satisfied by the product 
@,v; is 

( 6 . 2 4  

with h~ a,(@, v;) = 0 on shorelines, (6.2b) 
and @,v; = 0 at exit from non-designated channels. (6.2 c) 

Downstream of the source xo, the forcing term in ( 6 . 2 ~ )  is positive. Hence, downstream 
of xo, the temporal variance vi is likewise positive. 

m, m2 hu, a,<@, v;) - a,C(m,/mZ) h K  a,(@, a;)> = 2(m,/m2) h K  @,<a, G,)2, 

When integrated across the ith channel, ( 6 . 2 ~ )  yields the result 
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The integrand on the right-hand side is non-negative. Thus, on average a: increases 
downstream and we can define a positive-definite shear dispersion coefficient (Smith 
1984) : 

The 49; factor arises because traditionally dispersion is quantified in terms of spatial 
rather than temporal variance. For a sufficiently long channel 9, becomes independent 
both of the route p into that channel and of the source position (xo, yo).  An alternative 
expression for the growth rate of [ailP, which avoids numerically awkward y-  
derivatives, is 

( 6 . 5 ~ )  

w 

where GP = G, - [G,],. (6.5b) 

From the temporal variance a: for each individual route p we can construct a 
second moment for the superposition concentration (relative to the flux-weighted travel 
time 7 ) :  

= c {(t - 7P - G, - to)' + 2(7, + G, - 7 )  (t - T ~  - G, - to) + (7, + G,- 7)') cP dt 
J - c o  

The flux-weighted concentration (summed over all routes and channels) has a temporal 
variance 

(6.7) 

The summation of [a:], can be thought of as being a genuine measure of the shear 
dispersion process. The summation of [G;], involves temporal smearing across the flow 
associated with the time-of-arrival G, at different places across the flow. It is this 
contribution to s2 that is associated with the apparent contraction in size of the tracer 
cloud when there is a sudden mean-square reduction in G, (Fukuoka & Sayre 1973; 
Smith 1984; Daish 1985). The summation of ( ~ ~ - 7 ) ~  accommodates the different travel 
times for the different routes. 

s2(x; xo, Yo) = c qa:1, + c qG:I, + c (7, - 7>",. 
a P P 

7. Cosine velocity and diffusivity profiles 
In practice the equations (4.3), (5.2), (6.2) for the dosage, time-of-arrival and 

temporal variance would have to be solved numerically. Tsai & Holley (1978) noted 
that if a channel did not vary along its length then eigenfunction expansions could be 
used. For a laminar plane Poiseuille flow Daish (1985) numerically calculated the 
eigenfunctions. Here we use an example in which the eigenfunctions are orthogonal 
polynomials. The channels have m, = 1, constant depth Hi and cosine profiles of both 
velocity and diffusivity : 

(7.1 a, b) ul( Y) = $ 7 ~  Ui cos ( 7 ~  Y/2Bi), K = $Ki cos ( 7 ~  Y/2Bi). 
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FIGURE 2.  Four categories of junction (a-d). 

Here Y is the physical distance from the centre of the ith channel, Bi is the distance 
from the centre to the sides, Ui is the bulk velocity and Ki is the mean transverse 
diffusivity . 

A physical interpretation of the flow could be as a channel of constant depth with 
a non-uniform distribution of vegetation, which causes reduced flow and mixing 
towards the sides. In each individual channel the total volume flux of water is 

( 7 4  

The e-folding distance for the decay of symmetric non-uniformities in concentration is 

Qi = 2Hi Ui Bi. 

For rivers, the quotient ( Q i / H i  Ki) is typically about 6000, given an e-folding distance 
L, of about 200B. For antisymmetric non-uniformities the e-folding distance is a factor 
of three longer, i.e. about 600B. As a reference case, for a modest sized river with half- 
width B = 10 m the principal e-folding distance L, is 2 km and asymmetries take 6 km 
to decay. 

As advocated by Yotsukura & Cobb (1972), we adjust the metric coefficient m, 
across the flow so that y-increments correspond to fractional volume flux increments 
across the channel: 

2Bi 
m2 = - sec (g ) ,  n y = s i n b q .  

Hence, in terms of y the cosine profiles (7.1 a, b) become square roots 

K = $Ki(l -y2)l”, 
2B 

m, = 
n(l -y,)l/2‘ 

(7.4a, b) 

(7.5 a-c) 

At a flow division or junction (e.g. upstream or downstream ends of an island) we 
assume that the river geometry and flow adjust on a lengthscale short relative to that 
of lateral exchange (i.e. adjustment on a lengthscale comparable with one channel 
breadth rather than 100 breadths, in the reference case 20 m not 2 km). Thus, the 
matching of the concentration, dosage, time-of-arrival or temporal variance merely 
requires the correct identification of flow lines from one channel to another. The flow 
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line y ,  in the i,th channel is the downstream extension of y in the ith channel if the 
accumulated volume fluxes across the many channels match correctly : 

i-1 i.-1 

hence, the re-designation of the y-labelling is linear. 
Figure 2 illustrates the four elementary types of junction that can be encountered 

along a route: loss of solute to an upper/lower branch or dilution from an upper/lower 
tributary. Any more complicated type of junction (such as splitting into three) can be 
interpreted as being two or more of these elementary junctions very close together. 

8. Matching Legendre series 

dosage now becomes 
In terms of the fractional volume flux coordinate (7.4b), the equation (4.3a) for the 

The solution can be written as a Legendre polynomial expansion: 

Here the weight factors c 6 ~ ) ( x o , y o )  are the values of the Legendre coefficients at the 
position 2, which can either be the source location xo or the start of the present channel 
(as specified in the final term in the multi-index p). At the source the initial weight 
factors are 

The exponential decay term for n = 2 gives rise to the formula (7.3) for the e-folding 
distance. 

At the end of a section of channel we need to ensure matching of @p into the next 
designated channel on the extended route. To do this we need to represent a Legendre 
polynomial Pn(y) for the parent ith channel as a Legendre series for the next generation 
i,th channel : 

~ 5 ‘ ~ )  = P,(yo)/Q0. (8.3) 

00 

(2n + 1)  P,(Y) = c A:’(2m + 1) Pm(Y*), (8.4) 
m=o 

where the values y and y ,  are linearly related via the volume flux matching (7.6). The 
coefficients A:) are given by integrals 

where the range of integration (y‘,-),y$+)) or (y(-) ,y(+))  is constrained so that only water 
that goes from i to i, is involved. Conveniently, over the restricted range P,(y) and 
P,(y,) are polynomials in y ,  (or in y) .  Hence, a high-order Gauss numerical 
quadrature formula (Legendre weights and positions on the restricted range) gives 
exact results for m + n up to twice that high order. In the special case in which all the 
water in channel i, comes from channel i, the polynomial character of P,(y) over the 
full range (- 1, l )  of y* ensures that the A:) coefficients are zero for m > n. 
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FIGURE 3. Contours of dosage for the lower route past an isolated island. Three (symmetric) e-folding 
distances downstream are shown. There is a foreshortening by a factor of about 100. (a) y ,  = 0, (b) 
y ,  = 0.5. 

If the length of the parent channel (possibly starting at the source xo) is Li, then the 
weight factors 6b:)(xo,yo) at the start of the next generation channel are 

The rapid exponential decay with n implies that to achieve any fixed level of accuracy 
only a modest number of modes need to be calculated. For example, with a channel 
length Li equal to a quarter of the symmetric e-folding length L,, the n = 10 or higher 
modes will have decayed to e-* or less. 

We can characterize an isolated island by the end points x-, x, and by the dividing 
streamline y,. Thus a volume fraction :(l +y,) of the water flow enters the lower 1 
channel and a volume fraction i (1 -y,) enters the upper 2 channel. If the discharge 
took place far upstream of the island, then the dosage CD will have become uniform 
across the river before the island is reached. Consequently, the dosages CD1, Qj2 in the 
two branches either side of the island will remain constant. So the series (8.2) only 
comprises the n = 0 constant term. 

At the exit x+ from the isolated island the Legendre coefficients have the explicit 
formulae 

(8.7a, b) 

(8 .7~)  

Figure 3 (a,  b) shows contours of Q, CD1 (i.e. the lower route) for the particular cases 
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(a)  y, = 0 and (b) y, = 0.5. The tight clustering of the dosage contours at the left-hand 
side of the figures demarcates the abrupt decrease in dosage from 1 for lower-route 
water to 0 for upper-route water at the trailing edge of the island (x+,yr ) .  The 
longitudinal axis extends to the right for 3 multiples of the symmetric e-folding distance 
(7.3), corresponding to about 600B downstream of the island. For our reference case 
of B = 10 m, figure 3(a, b) would extend 6 km beyond the trailing edge of the island. 
Even at such large distances, the dosage has not yet become well-mixed across the flow 
(principally because of the Pl mode with its e-folding distance of 3LJ. The transverse 
axis is Y/B.  So, in case (b), y, = f ,  the trailing edge of the island is located at Y / B  = 5. 
If we require dosage contours QQ2 for the upper route, then it suffices that we replace 
the contour labelling r by 1 - r .  

For later use we record that in figure 3(b) the lower-route dosages at the far right 
on the upper bank, centreline and lower bank are 

QQ, = 0.52,0.77, 0.93, (8.8) 
while at the same points the upper-route dosages are 

QQ, = 0.48,0.23, 0.07. (8.9) 

Thus, even at large distances downstream, the relative importance of the two routes 
past the island is quite different at different points across the flow. 

9. Elapsed time either side of the island 
For the illustrative example of a discharge far upstream of an isolated island, the 

dosages Ql, Q2 are constant in the two branches either side of the island. Hence, the 
effective travel speed along each branch is precisely the bulk velocity Ui for that 
branch. The elapsed times along the two sides of the island are 

7i(x+) - 7&- )  = Li/ ui. (9.1) 
The flux-weighted travel time past the island is 

1 l + y r  L ,  l -y  L, 
7(x+) - 7(X-) = - 2( - 2 )q+(& 

Relative to the flux-weighted travel time, the travel times along the individual channels 
are related to the difference in travel times for the two sides of the island 

72(x+)-7(x+) = ~ --- 
(l;yr)(: 2). 

(9.3 a)  

(9.3b) 

Generally we can expect channels with smaller volume flux to have smaller velocities. 
For example, if the channel lengths are equal, Li = L, the breadths are proportional to 
the depths, and the eddy transport coefficients scale as the products Hi Ui,  then the 
dependence upon yr is 

0.4  0 .6  
1 + Y I  --- 

Bo Ho 

Bo Ho 

0 .6  Kz 1-Y, 0 .2  u, 1 -Yr 0 .4  ".=--=il) H2 1-Y, , o , = ( I )  , ,=(7) . (9.4d-f) 
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FIGURE 4. Dimensionless time displacement going past an island for the lower 1 route. 

The corresponding scalings for the time differences (9.3 a, b) are 

( 9 . 5 4  

(9.5b) 

Figure 4 shows how the dimensionless time difference for the lower 1 route depends 
upon the parameter y,. When y ,  is negative and slowly moving water traverses the 
smaller lower route there is late arrival and positive relative travel time. Conversely, 
positive values of y I  and rapidly moving water traversing the larger lower route yields 
early arrival and negative relative travel time. The results for the upper route can be 
obtained by replacing y ,  by - y,. 

For later use we note that when yr  = 0.5, the dimensionless time differences for the 
alternative routes either side of the island are 

-0.065 and 0.195. (9  * 6) 

Thus, for an extremely long island of length L = 3L,, the time difference between the 
routes would be 0.78 times the e-folding time L J U ,  for the downstream channel. If in 
our reference case B = 10 m we also specify the flow speed Uo = 0.55 m s-' (winter flow 
in the Trent), then the time difference becomes 0.78 hours for an island both sides of 
which have length 6 km. 

10. Effective speed downstream of the island 

slowness can be written 
For the cosine velocity and diffusivity profiles (7 .5~-c)  the formulae (5.3b) for the 

(10.1) 

The denominator in the integrand is that conventionally associated with Tchebyshev 
polynomial expansions, yet the result (8.2) for @p involves Legendre polynomials. 
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e-folding lengths downstream, xlL, 

FIGURE 5 .  Effective speed of tracer downstream of an island for the lower 1 route. 

Fortunately, there is a simple link between the two families of polynomials (Erdelyi et 
al. 1954, 10.10.17): 

N 

' 2 N ( Y )  = g k +  c g N - J g N + J  G J ( Y ) ,  ( 10.2 a) 
j = 1  

N 

' 2 N + l ( y )  = c g N - J g N + J + l  GJ+I(Y),  (1 0.2 b) 
J=O 

where 

or equivalently 

(10.3a, b) 

( 1 0.3 c) 

Only the zero-degree Tchebyshev polynomial 
Hence, the Legendre series (8.2) for @,, yields a series for the slowness: 

= 1 contributes to the integral (10.1). 

(10.4) 
(x - a) 

3 4  

m & 2 N )  

- = 1 + c ( 4 N +  l)g&*exp -N(2N+ 1)- 
U 

@P N = l  P 

For the illustrative example of a discharge far upstream of an isolated island the 
dosages @ , , @ ,  downstream of the island have the Legendre coefficients stated in 
(8.7a, b). Figure 5 shows the downstream evolution of the speed for the tracer which 
has traversed the lower 1 route. When y ,  is negative, the water from the lower channel 
is subsequently in the slower-moving near-bank region. Hence, the effective speed 
is initially small. Conversely, when y I  is positive, the fastest-moving central water 
originated from the lower 1 channel and the effective speed is initially large. The 
slowness only involves the even modes, so the approach to the asymptote is much more 
rapid than was exhibited by the dosage. To obtain results for the upper 2 route it 
suffices to replace y I  by - y I .  

The elapsed time between 2 and x differs from travel at the bulk velocity ai: 

4B: [ -exp (- N(2N+ l)(x-i)  gL(4N+ 1) & ( 2 N )  
A. (10.5) - 

X 2 K i  ~ = l  3Le )] 2N(2N+ 1) @;) 
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2.5 7 
26 1 

Dividing streamline, yz  

FIGURE 6. Additional time displacement in the adjustment downstream of an island 
for the lower 1 route. 

If the ith channel extends several e-folding distances downstream, then we can 
characterize the far-field effect of the starting conditions Q):") in terms of the eventual 
time displacement 

(10.6) 

Here, the e-folding distance L, divided by the bulk velocity Ui gives a convenient and 
physically meaningful non-dimensionalization. 

For our standard illustrative example of a discharge far upstream of an isolated 
island we can use the Legendre coefficients (8.7a7 b). Figure 6 shows the asymptotic 
dimensionless time displacement A71 Ui/L,  as a function of the island position across 
the flow y,. In keeping with the results shown in figure 5, there is a time delay when 
y ,  is negative and water from the lower 1 route moves relatively slowly. The magnitude 
of the delay can be as large as 2.3 times the travel time over an e-folding distance. 

When y ,  = 0.5 the asymptotic dimensionless time displacements for the alternative 
routes either side of the island are 

-0.15 and 0.45. (10.7) 

Thus the time difference of 0.6 e-folding times is comparable with the contribution 
estimated at the end of the previous section in this paper. In our reference case 
B = 10 m, U,, = 0.55 m s-l, the time displacements can be regarded as being in units of 
hours. 

11. Time of arrival 
At different positions y across the channel the precise time of arrival will differ from 

the reference time-of-travel 7,(x; x,, yo). Far downstream within a channel the 
asymptotic time-of-arrival function G" has the Legendre series representation 

(11.1) 
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Cross-stream position, Y 

FIGURE 7. Time-of-arrival function far downstream along a channel as a function 
of observation position Y. 

Figure 7 shows a graph of G(")U,/L, as a function of the distance Y from the centre 
of the flow. The temporal centroid occurs slightly earlier in the fast-moving fluid near 
the centre of the river and substantially later in the slow-moving fluid near the banks. 

By analogy with the Legendre series expansion (8.2) for the dosage @,, we seek to 
represent @, G, : 

m 

@p Gp = c (2n + ' n (y )  rp'(x ; x07 YO). (11.2) 
n=o 

The Pn component of the field equation (5.2a) yields an ordinary differential equation 
for rp) : 

Continuity of @,, G, across junctions is ensured by starting conditions : 

P) = 0 at the discharge x = x,, (11.4a) 

(11.4b) 
a, 

Tjr) = c Ag'TP'across the junction x = x,. 
n=o 

(We recall that y, is the downstream extension of the route y.) 

Hence, r:) retains the value f:) transferred across the junction x = 2 :  
By construction, (?, has been selected so that r:) exhibits no systematic growth. 

[G,], = T:)(x; xo,yo) = f:)(x,,yo) for x > 2. (11.5) 
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FIGURE 8. Contours of the temporal centroid on both sides of an island, when a quarter of the total 
flow goes along the upper 2 route. As before there is a foreshortening by a factor of about 100. 

If a distributary (sub-channel) receives relatively slow-moving water with G,, positive, 
then the continuity of @,, G,, necessarily requires that on average the downstream value 
of @,,* G,,* continues to be positive. The upstream-downstream symmetry of the flow 
geometry considered here makes [G,],  the same as A71 in figure 6. In particular, when 
y I  = 0.5 there will be a time difference of 0.6 e-folding times between the mean entry 
time for the alternative routes either side of the island. 

To evaluate the integral term in (11.3) for n > 0 we again use the Tchebyshev 
representations (10.2 a, b). We define the quantities 

It is easy to show that 

m i n ( M ,  N )  

' 2 M , 2 N  = c g M - J g M + J g N - J g N + J ,  
J = l  

m i n ( M ,  N )  

' 2 M + l , 2 N + l  = c g M - J g M + J + l g N - J g N + J + l ?  
J=O 

' 2 M ,  2N+1 = O. 

The solution for rp) has the cumbersome form 

1 (x - 2) 
r,p)(x; x0, yo)  = ~ ; ) E J X  - 2) - &:)(I - (2n + 1) I,, ,> ~ E,(x - 2) 

U 

(11.6) 

(11.7a) 

(11.7b) 

( 1 1 . 7 ~ )  

&ym, 
(E,(x - -12) - E,(x- -12)) 

6L 
+e x (2m+l)  u m=o (m-n)(m+n+ 1) 

m + n  

6L &n) -ep m @ p I m ,  
(1 - E m ( x - f ) } ,  ( 1 1 . 8 ~ )  

m(m + 1) 
En(x-2)  x (2m+1) u @p m = l  
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with E,(z) = exp (-m(m + 1) z/6Le). (11.8b) 

For n odd all the terms decay downstream (on the length 3L, of the PI-mode). For n 
even the m = 0 contribution does not decay and agrees with the far-downstream 
asymptote (1 1.1). 

As an illustrative example, figure 8 shows the contours of the temporal centroid 
T,,+ G, either side of a long island when the dividing streamline is at yr  = 0.5. (Strictly, 
the value of the arrival time T at the island should be added to the contour values.) As 
in figure 3 (a, b) there is foreshortening by a factor of about 100. The relative breadths, 
velocities and diffusivities within the channels are specified as in ( 9 . 4 4 ) .  Thus, instead 
of the 3 (symmetric) e-folding lengths as shown in figure 3(a, b) there are 3.36 and 5.42 
e-folding lengths respectively for the lower 1 and upper 2 channels. The numerical 
labelling of the contours is in e-folding times relative to the flow in the full-width 
channels before and after the island. The centroid displacement function in the parent 
channel is sliced by the island. The initial asymmetry decays and the time-of-arrival 
function G,, re-establishes the symmetric shape (1 1.1) across each of the channels. The 
initial time difference of 0.6 e-folding times at entry grows to 1.4 e-folding times at exit. 
For the reference case B = 10 m the island would be 6 km long. 

Figure 9(a, b) extends the temporal centroid contours to downstream of the island 
for (a)  the upper and (b) lower routes. Although the shape of the contours eventually 
recovers the symmetric shape (1 1. l), there is a substantial time disparity between the 
two routes as evidenced in the numerical labelling of the time contours. At the far right 
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in figure 9(a) the dimensionless times of arrival on the upper bank, centreline and lower 
bank are 

10.3, 7.2, 8.6, ( 1 1.9 a) 

while the lower-route dimensionless times in figure 9(b) are 

7.6, 5.4, 8.4. ( 1 1.9 b) 

(Again, the value of the arrival time 7 at the island should be added to these times.) In 
our reference case B = 10 m, U, = 0.55 m s-l, the times can be regarded as being in 
units of hours. 

12. Size of the tracer cloud 
Prior to the splitting of the flow at the isolated island the dosage Q, has become 

uniform and the time-of-arrival function G" has the Legendre series (1 1.1). Hence, the 
integral expression (6.3) for the downstream growth of the temporal variance [g2] can 
be evaluated : 

1 d[g2] - 6L, O0 (4N+1) = 0.4048 -. L e  
2 dx U 2  Zlg'2N(2N+ 1) U 2  

(12.1) 

Equivalently, the shear dispersion coefficient has the value 

9" = 0.027 34 B2U2/K ,  (12.2) 

with the inverse dependence upon the transverse diffusion coefficient K that was first 
revealed by Taylor (1953). 

Along the two sides of the island Q, remains uniform and the time-of-arrival function 
G, again has a Legendre series (1 1.2). Thus, the growth of the temporal variance has 
the series expansion 

(12.3) 

Figure 10 shows the downstream evolution of the temporal dispersion coefficient for 
the lower 1 route along the island. As before, replacing y I  by -y I  gives the results for 
the upper 2 route. The physical quantities are assumed to vary with y I  according to 
(9.4~-f). In particular, the quotient U:/Le is independent of y I  are there is little 
difference between the growth rates of cri for the alternative routes either side of the 
island (e.g. the y ,  = -0.5 and y I  = 0.5 curves are close together). The initially small 
temporal dispersion coefficient can be attributed to the lower K-values in the narrower 
channels alongside the island. 

Downstream of the island Q, is non-uniform and to evaluate the growth rate of CT; 
we utilize the expression (6.5a): 

Figure 11 gives the numerical results for the particular case y ,  = 0.5. As in figure 10, 
there is little difference between the growth rates of [a2, for the alternative routes either 
side of the island. The initially large temporal dispersion coefficient can be attributed 
to the higher K-values in the faster-moving flow downstream of the island. The diffusive 
adjustment of a,G, gives a rapid drop in shear dispersion, followed by a gradual 
recovery towards the asymptote (12.1). 
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FIGURE 10. Temporal dispersion coefficient for the lower 1 route. The downstream e-folding 
distance is that for the full-size case y I  = 1. 
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FIGURE 11. Temporal dispersion coefficient downstream of an island for the alternative routes. 

For a discharge 3 mixing lengths upstream of the island, the dimensionless temporal 
variance [az](U/L,)2 at the start of the island would be about 1.2. The precise value 
would depend upon the source location yo across the flow. From figure 10 we can 
ascertain that going along the island the dimensionless variance would be increased by 
about the same amount 2.1 for either route. From figure 11 the dimensionless variance 
3 mixing lengths downstream of the islands grows by a further 2.2 for the upper route 
and 1.9 for the lower route. Hence, the total dimensionless temporal variance 
[a;],( U / L J 2  experienced 3 mixing lengths downstream of the island for the two routes 
would be 

5.5 and 5.2. (12.5a, b) 

In our reference case B = 10m, U,, = 0.55 m s-', the temporal variances can be 
regarded as being in units of hours squared. 
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13. Tilted Gaussian approximation 
The complexity of the calculations escalates rapidly as we proceed to higher 

temporal moments. For the dosage there was an explicit series (8.2). For the time-of- 
arrival function G,, a double series (11.2), (11.8) was used. Finally, the weighted- 
average temporal variance [cT;],, needed a numerical integration. Fortunately, at this 
stage it is possible to construct a Gaussian approximation with respect to t for the 
concentration. 

For spatially uniform flows the Taylor (1953) model for shear dispersion yields 
instead a Gaussian profile with respect to x. Smith (1987) showed that in an (x,t)- 
plane, moments can be calculated along any sloping line. The Gaussian approximation 
is best at a particular non-zero tilt at which the third moment is asymptotically zero. 
At a fixed value of x or t the best approximation is a 'tilted' Gaussian with respect to 
the free coordinate. 

In the present context the tilted Gaussian approximations compatible with the 
known temporal moments can be written 

c,, = 0 for t-to < q < 7,,, (13.1~) 

(13.1 b) 
(t - to - 7, - G,, + 4,)' 

2A,( t - to - r,) 
9@, 

(27cd,(t - to - r,))'/Z 
c =  

with A ,  = { [ 4 + + ( 7 , -  T,)">'/"+(7,,- q). (13.1 c) 

The spatial Gaussian solution corresponds to a zero value for the minimum time of 
travel q ( x ;  xo). 

Chatwin (1980, Appendix A) gives an ingenious method for evaluating temporal 
moments for such tilted Gaussians. For the approximation (13.1~-c) the first few 
centred temporal moments are 

( t  - to -T,, - G,) c,, dt = 0, (13.2a, b) 

r" (t - to - T,, - G,)'c, dt = q[vg,@,, + qd, @,, G,,, (13.2~) 
J -02 

m 

( t  - to - 7,, - G,,)",, dt = q(3[1~& + 24;) A,, @,, + 344; @, G,, (13.2d) 

where [@,,G,,l, = 0. (1 3.2 e) 

Hence, the tilted Gaussian approximation exactly replicates the zero and first 
moments. When averaged across the flow, the second moment is likewise correct. If the 
cross-flow average of the third moment were known (Smith 1984), then it would be 
possible to select optimally the effective minimum time of travel q ( x ;  xo). 

An elementary way of estimating q is to use the peak flow speed along the route y. 
For example, a tracer released at time-3(Le/U) at a distance 3L, upstream of the 
island would first reach the island at dimensionless time 

-3+6/n Z-1.1. (13.2) 

The upper and lower routes alongside the island of length 3L, contribute additional 
minimum dimensionless travel times 

2.5 and 2.0. (13.4a, b) 

s_, 
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c = c, + C? 

2.5 12.5 

2.5 12.5 

Dimensionless time, t U/L, 

FIGURE 12. Tilted Gaussian approximations for the concentrations as functions of time at the 
centre and sides 3 e-folding distances downstream of the island. 

Downstream of the island the remaining length 3L, takes a further minimum 
dimensionless time 1.9. Hence, the earliest dimensionless times of arrival via the upper 
and lower routes are 

3.3 and 2.8. (13.5a, b) 

By comparison, assuming that the centroid arrival time at the island is zero, the 
dimensionless centroid times T ~ (  U/L,) at the standard 3L, downstream of the island for 
the upper and lower routes are 

7.8 and 5.9. (13.6a, b) 

The results at the standard distance 3 mixing lengths downstream of the island and 
at the standard cross-channel locations on the upper bank, centreline and lower bank, 
are scattered throughout the paper: (8.8), (8.9) for the dosages GP, (13.6a, b) for the 
reference travel times T ~ ,  (1 1.9a, b) for the composite temporal centroids T,,+ G,,, 
(12.5a, b) for the temporal variances cr; and (13.5a, b) for the earliest times of arrival 
q. Combining all these results into the tilted Gaussian approximation (1 3.1 a-c) gives 
the concentrations c, and c, shown in figure 12. In our reference case B = 10 m, 
U,, = 0.55 m s-', the dimensionless time axis in figure 12 can be regarded as being in 
units of hours after the centroid arrival time at the beginning of the island. 

14. Concluding remarks 
In figure 12 all the qualitative features discussed in this paper can be seen. The 

concentrations c, and cz from the two routes either side of the island have different 
magnitudes, arrival times and spreads. Also, the magnitudes and arrival times exhibit 
strong differences at the different locations across the flow. On the upper bank the 
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upper-route concentration c, is of enhanced significance, while on the lower bank the 
lower-route concentration c1 dominates. At such large distances (totalling about 1800B 
or in the reference case 18 km) between tracer release and observations, the temporal 
spread exceeds the temporal separation between the contributions c, and c2. So, the 
superposition does not exhibit multiple peaks (as would a release close to the start of 
the island and observed only a short distance downstream of the end of the island). 
Nevertheless the total concentration (continuous) curves in figure 12 are noticeably 
different from each other. For example, the total concentration on the upper bank is 
more dispersed than on the lower bank and the concentration at the centre of the river 
arrives abruptly and reaches a relatively large maximum value at an early time. 

The key assumptions upon which this paper is based are (i) vertically well-mixed 
flow, (ii) neglect of longitudinal turbulent diffusion, (iii) the concentration can be 
characterized by the first few moments with respect to time, (iv) steady flow. The first 
three in that list of assumptions all preclude us from making meaningful predictions for 
the concentration any closer than several channel breadths downstream of the tracer 
release site. At shorter distances the calculated shear dispersion associated with the 
lateral shear of the vertically averaged flow would be growing rapidly but would not 
yet have dominated the neglected longitudinal shear dispersion associated with the 
vertical shear and the neglected longitudinal turbulent mixing. The predicted 
concentrations near the tracer release site would be too large, particularly in the centre 
of the flow where the lateral shear is zero. However, a lot of river remains in which 
those three assumptions are reasonable. It is the steady flow assumption (iv) that is the 
most restrictive. Neither estuarine flows nor sudden flooding events can be studied with 
the methods developed in this paper. 

The central message of this paper, as conveyed in figure 12, is that the complexity of 
tracer concentrations in multi-connected flows is principally the complexity of 
superposition. The illustrative example involved just a single very long island. A larger 
number of islands would imply a larger number of routes p and a richer range of 
possibilities in the superposition of the individual concentration distributions. Each of 
these contributions evolves along its route p in an essentially diffusive (tilted Gaussian) 
manner and can be quantified in terms of its first few temporal moments. 
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